- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Solounias, Nikos (2)
-
Smith, Shannon (1)
-
Yohe, Laurel R (1)
-
Yohe, Laurel R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It has been recognized as early as the Victorian era that the apex of the distal phalanx has a distinct embryological development from the main shaft of the distal phalanx. Recent studies in regenerative medicine have placed an emphasis on the role of the apex of the distal phalanx in bone regrowth. Despite knowledge about the unique aspects of the distal phalanx, all phalanges are often treated as equivalent. Our morphological study reiterates and highlights the special anatomical and embryological properties of the apex of the distal phalanx, and names the apex “the bony cap” to distinguish it. We posit that the distal phalanx shaft is endochondral, while the bony cap is intramembranous and derived from the ectodermal wall. During development, the bony cap may be a separate structure that will fuse to the endochondral distal phalanx in the adult, as it ossifies well before the distal phalanges across taxa. Our study describes and revives the identity of the bony cap, and we identify it in three mammalian species: humans, cats, and horses ( Homo sapiens, Felis catus domestica , and Equus caballus ). During the embryonic period, we show the bony cap has a thimble-like shape that surrounds the proximal endochondral distal phalanx. The bony cap may thus play an inductive role in the differentiation of the corresponding nail, claw, or hoof (keratin structures) of the digit. When it is not present or develops erroneously, the corresponding keratin structures are affected, and regeneration is inhibited. By terming the bony cap, we hope to inspire more attention to its distinct identity and role in regeneration.more » « less
-
Yohe, Laurel R; Solounias, Nikos (, Biological Journal of the Linnean Society)null (Ed.)Abstract Evolution has shaped the limbs of hoofed animals in specific ways. In artiodactyls, it is the common assumption that the metatarsal is composed of the fusion of digits III and IV, whereas the other three digits have been lost or are highly reduced. However, evidence from the fossil record and internal morphology of the metatarsal challenges these assumptions. Furthermore, only a few taxonomic groups have been analysed. In giraffes, we discovered that all five digits are present in the adult metatarsal and are highly fused and modified rather than lost. We examined high-resolution micro-computed tomography scans of the metatarsals of two mid and late Miocene giraffid fossils and the extant giraffe and okapi. In all the Giraffidae analysed, we found a combination of four morphologies: (1) four articular facets; (2) four or, in most cases, five separate medullary cavities internally; (3) a clear, small digit I; and (4) in the two fossil taxa of unknown genus, the presence of external elongated grooves where the fusions of digits II and V have taken place. Giraffa and Okapia, the extant Giraffidae, show a difference from all the extinct taxa in having more flattened digits tightly packed together, suggesting convergent highly fused digits despite divergent ecologies and locomotion. These discoveries provide evidence that enhances our understanding of how bones fuse and call into question current hypotheses of digit loss.more » « less
An official website of the United States government
